Manned Unmanned Cooperation

Agenda

- Cooperation Sweden USA
- Project
- 6th generation fighter aircraft and loyal wingmen
- Result

Presentation

- Hans Einerth
- Ret Lt Col, M Sc Engineering Physics
- JA 37 Viggen 600 fh
- JAS 39 Gripen 1400 fh
- SK 60 400 fh
- Gripen Operational Test and Evaluation unit
- SAAB Test pilot 2013-2019
- Displaypilot SAAB B17
- SAAB Gripen Product Management 2018-2019
- FMV Test Pilot since 2019
- Besides test pilot working with FCASC

Project

Background

- Sweden and USA in a valuable project with Ground Collision Avoidance System GCAS
- GCAS now implemented in JAS 39 Gripen and F-16
- MUMCM is a continuation of this successful collaboration
- Manned Unmanned Contingency Management
- Partners
 - AFRL
 - Lockheed Martin contracted by AFRL
 - FMV
 - FOI
 - SAAB contracted by FMV

PROJECT AGREEMENT NO. RDTE-US-SW-AF-19-01

TO THE

MEMORANDUM OF AGREEMENT

BETWEEN

THE DEPARTMENT OF DEFENSE OF THE UNITED STATES OF AMERICA

AND

THE GOVERNMENT OF THE KINGDOM OF SWEDEN

FOR

RESEARCH, DEVELOPMENT, TEST, AND EVALUATION

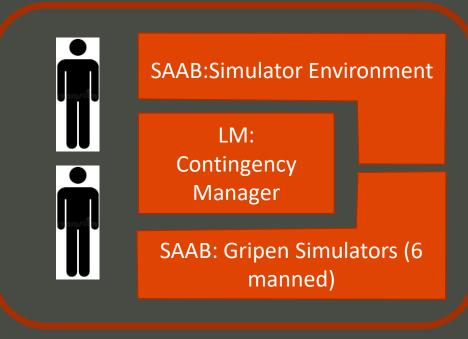
PROJECTS

DATED

APRIL 18, 2011

CONCERNING

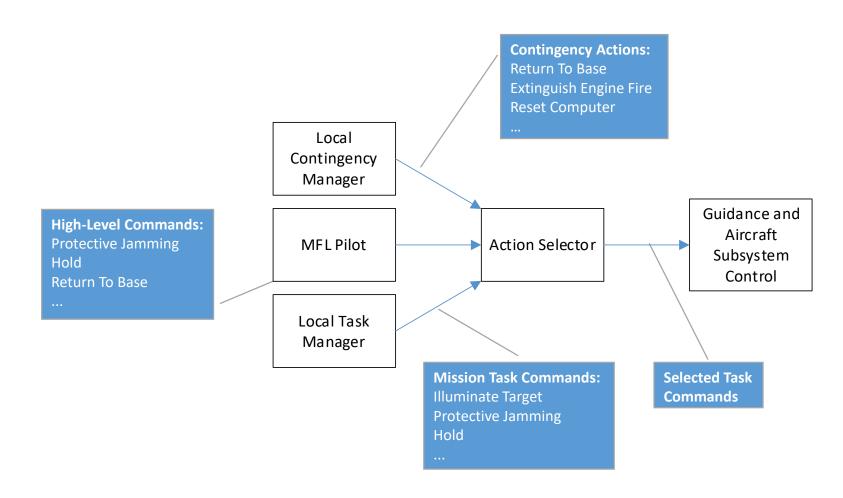
MANNED UNMANNED CONTINGENCY MANAGEMENT (MUMCM)



The project

- Lockheed Martin coded a Contingency Manager
- Errors in the LW trigger the CM, that suggests actions to Gripen pilot
- Gripen simulator

Error Introduced


Contingency Manager

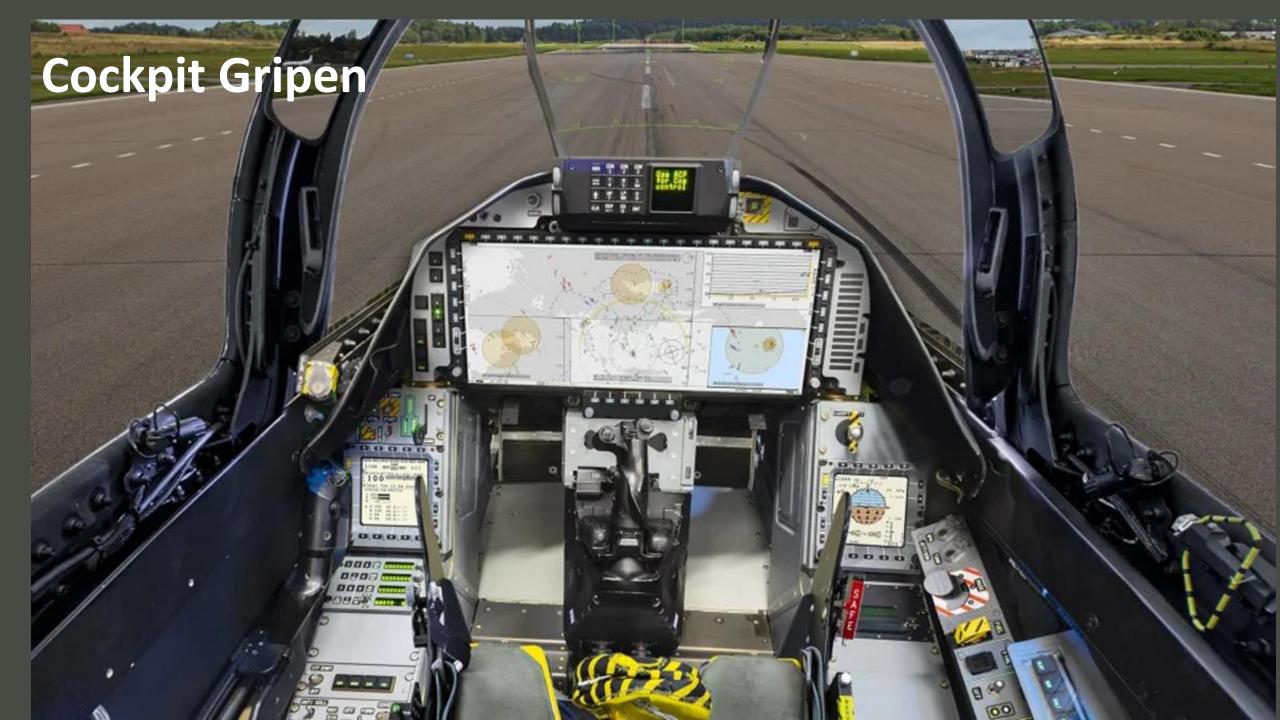
Required Actions

Pilot reaction

The Action Selector: manages aircraft control from multiple sources

Chosen Local CM Conditions and Actions

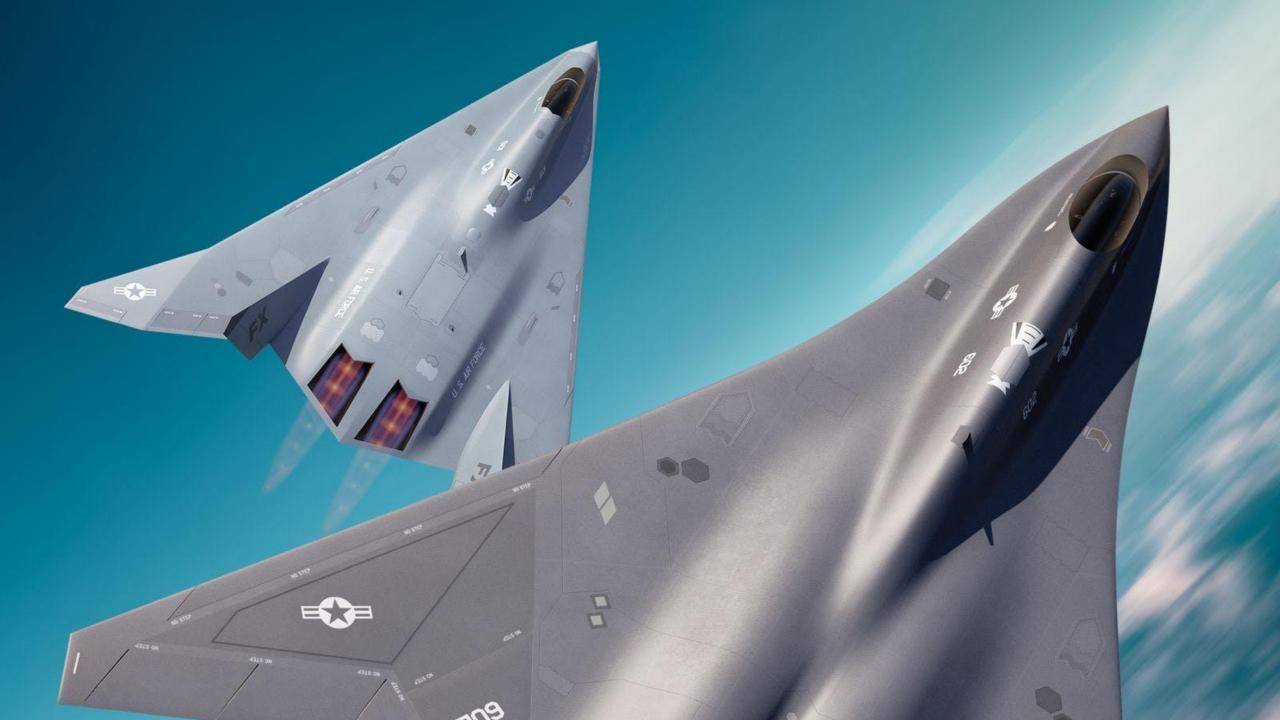
Index	Local CM Condition		
1	Engine Fire		
2	Engine Degraded		
3	Lost Electrical Gen		
4	Low Fuel		
5	GPS Hardware Failure		
6	Datalink Dropout Rate Exceeded		
7	Bad Weather		
8	Loss of Lead MF		
9	Internal Flight Control Failure		
10	Mission Manager Failure		
11	Off Route		
12	Target (Video) Sensor Failure		
13	Weapon Manager Failure		
14	Icing Detected		
15	Angle Of Attack Fail		
16	Avionics Computer Failure		
17	Mission Updates		


Index	Local CM Contingency Action			
1	Return to base			
2	Land ASAP			
3	Controlled crash			
3	Self destruct			
4	Increase safety distance to group			
5	Extinguish Fire			
7	Reset subsystem			
8	Activate backup power			
9	Check for GPS jamming			
10	Request coordinates for new route			
11	Evaluate mission			
12	Request addition of mission task			
13	Request removal of mission task			
14	Request weather route change (coordinates)			
15	Go to new altitude to clear icing			
16	Request confirmation of engine fire from pilot			
17	Handover to secondary MF as Lead			
18	Handover to GCS as Lead			

Definition of Autonomy levels used

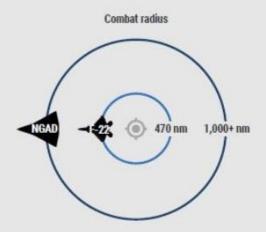
Name	Autonomy Level	Operator Authority		Computer Autonomy	Computer Autonomy Indication	Abbreviation
Automatic	5	Interrupt	Computer	Full Autonomy	FULL_AUTO	5:FULL_A
Direct Support	4	Revoke action	Autonomy	Action unless revoked	ACTION_UNLESS	4:ACT_UN
In Support	3	Accept advice Authorize action	Operator Authority	Advice and if authorized: action	AUTHORIZE_ACTION	3:AUT_AC
Advisory	2	Acceptance of advice		Advice	ADVICE	2:ADVICE
At Call	1	Advice only on request		Advice only if requested	ADVICE_ON _REQ	1:AD_ORQ
Commanded	0	Operator full authority (Action)		Support action	COMMANDED	0:COMMAN

- In the MUMCM project, the autonomy levels 3-5 and 0 was used. 1 and 2 was omitted to reduce the scope, but they should also be included in a complete implementation
- Note that an autonomy-level is not assigned to an aircraft, but is assigned to each *task*. I.e. some tasks may be executed autonomously, while others require the pilot permission to proceed (applies to autonomy level 0, 3-5)



FCASC
UK, Italy, Japan, Saudi

SCAF France, Germany, Spain



NGAD (6th Gen) aircraft requirements

- Stealth (radar, IR, visual)
 Range

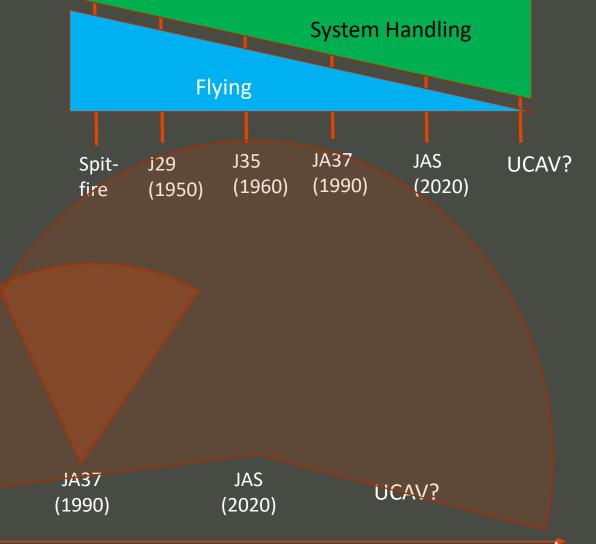
- Payload
 Manned-unmanned teaming

F-22

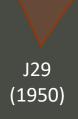
F-22 (5th Gen) aircraft requirements

- Stealth (radar) Supercruise
- Maneuverability
 Sensor fusion

Cost per plane



USAF
2 CCA per 300 F-35 and 200
NGAD
= 1000 CCA (Collaborative
Combat Aircraft)



Being a fighter pilot...

- Today: 90 % system handling, 10 % flying
- Very ONLINE and very REALTIME
- Sensors with longer range
- More sensors and systems
- Need to predict longer into future

Why loyal wingman?

- Not enough platforms
- Platforms too expensive
- Education and training prohibits fast growth in numbers
- Many missions dangerous (requires CSAR etc)
- Many long (dull) missions (fighter pilot environment is not suited for long missions)
- In a defensive operation under existential threat and very permissive ROE an autonomous LW is acceptable

Why crewed fighters

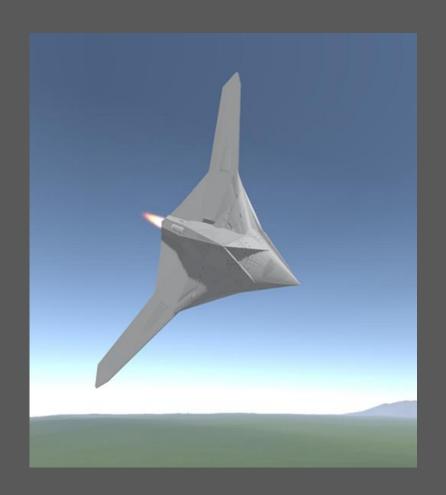
- Still has best flexibility
 - Can perform a variety of roles all over the world without tailoring equipment or software
 - Can be deployed globally without special arrangements around uncrewed aircraft
- Forward deployed human decisionmaking, without need of broad band datalinks
 - In offensive operations under strict ROE it is desirable to have humans physical in the attacking force
- In peacetime QRA only crewed platforms are acceptable

6th gen fighter

- Full data-to-decision environment in high-traffic, with drones, ground sensors, AI, combat cloud
- Optionally manned
- Variable-cycle engines (high thrust, cruise fuel efficient)
- Engine supplies significant more electricity and cooling than 5 th gen
- Directed Energy Weapons
- Stealth airframe and avionics
- Long range weapons Not a Close In Fighter
- Long range platform Large aircraft
- Virtual Cockpits

Large aircraft

2 engines


Small series

Expensive a/c

Not for small nations...?

UF-23 A/B Technical overview

UF-23 Data sheet

UF-23A Hydra

• Length 27ft

• Wingspan 36ft

Empty weight 5500kg

• MTOW 9500kg

• Thrust 36KN

Maximum speed: M0.92

• Service Ceiling: 45 000ft

Combat radius: 200nmi

• Max Nz: 7G

• Eco : M0.5/ 28 000ft

Rwy length: 1500m

UF-23B Super Hydra

Length 31ft

Wingspan 38ft

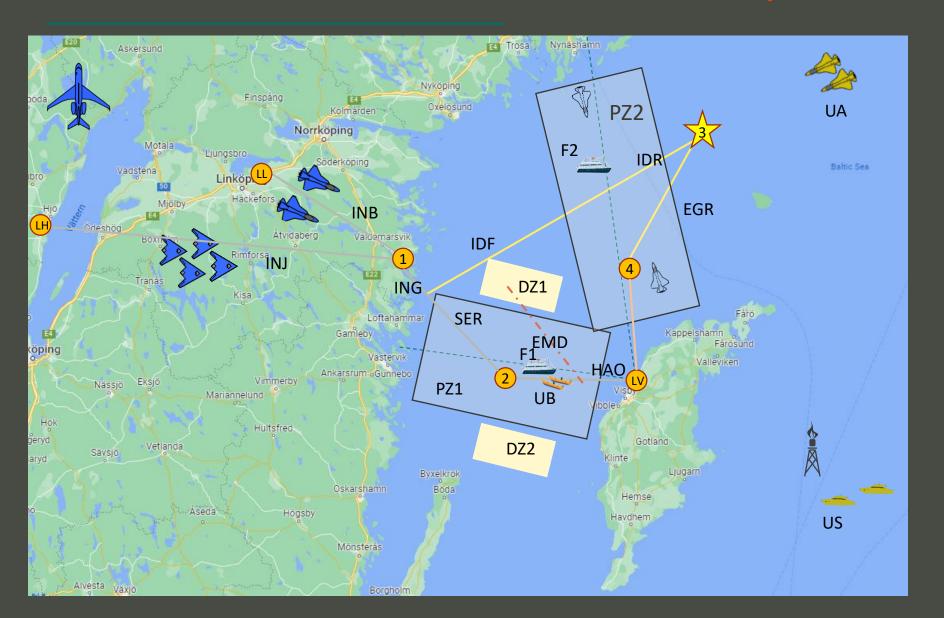
• Empty weight 6000kg

• MTOW 11 500kg

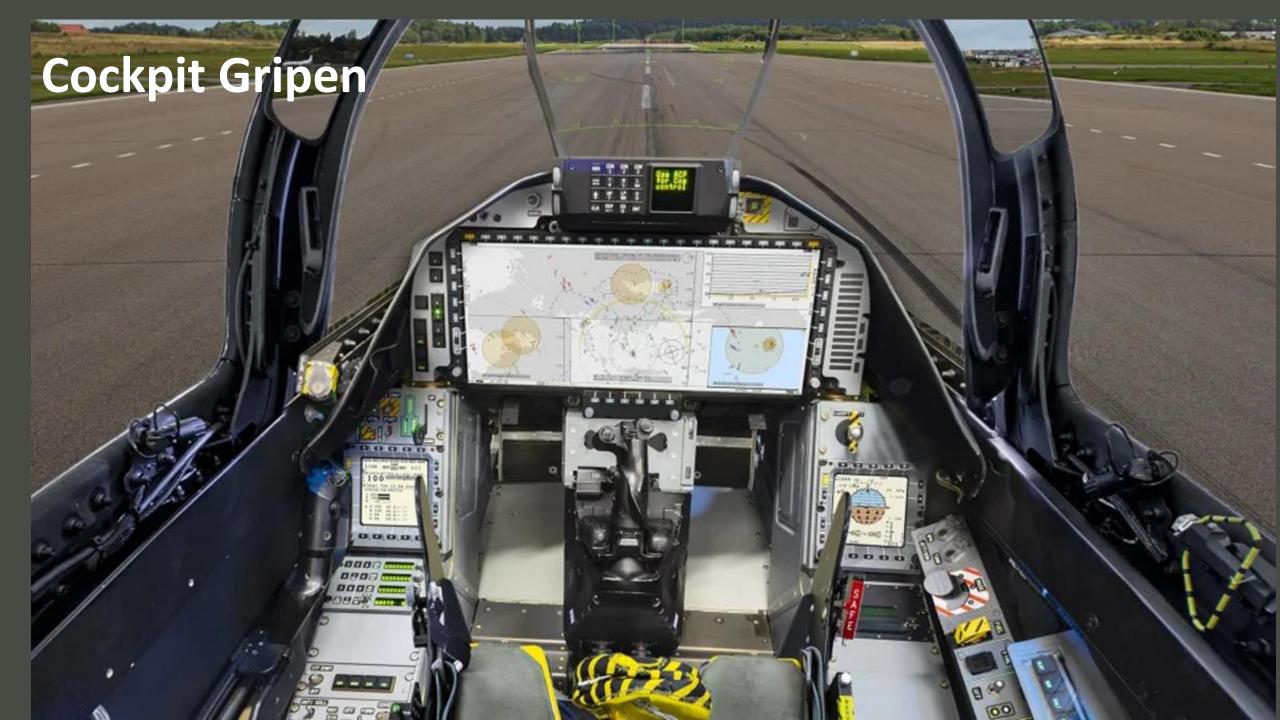
• Thrust 40KN

Maximum speed: M0.92

• Service Ceiling: 45 000ft


• Combat radius: 250nmi

• Max Nz: 7G


• Eco : M0.55/ 28 000ft

• Rwy length: 1700m

Mission/Scenario SimEval#1c/#2 (with variations)

Name	Phase-tag		
INB	Inbound		
ING	Ingress		
SER	Search		
НАО	Hand over		
INJ	Inbound Join, Flight over land		
EMD	Emergency Ditch		
	New mission phase		
IDF	Ingress A2A		
IDR	Identify and Repulse		
EGR	Egress		
3	Intercept point		
4	WP 4		
	Object		
PZ1-2	Protected Zones		
F1	Ferry 1		
F2	Ferry 2		
UA	Unknown Aircraft		
UB	Unknown Boats		
US	Unknown Ships		

Conclusions

- To begin: The workload in modern fighter is high
- The workload to control Loyal Wingman (especially when things starts to go wrong) was unaccaptable high
- We need new ways to communicate with uncrewed aircraft
 - Voice, touch displays
- A high level of autonomy of the uncrewed aircraft is essential
- The overall concept requires a thorough planning process
- Who is Pilot-In-Command of the Loyal Wingman?

