

Konferens: HFN – drygt 25 år av verksamhet Richard Wiik 2022-08-25

Att nyttogöra digitaliseringens fördelar, utan att behöva kämpa med dess baksidor

Or rather...

Background

- Cognitive Science, Human Factors & Ergonomics
- Work experience within E/E standards within different domains
- Functional Safety* & HF related safety

Magisterprogram, Ergonomi och Människa-Teknik-Organisation

Today's content

- Centered around automated driving systems
- I think and hope methods and practical experience presented today can be used on a wider scale
- Functional safety* standards differs across domains but are in large "similar"

61508-4: Functional safety part of the overall safety relating to the Equipment Under Control and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures

What does the sensors see?

Within the realm of functional* safety

Functional safety* takes many forms

- IEC 61508
- SS-EN 50126/8/9
- ISO 26262
- ISO/PAS 21448
- SS-EN 62061
- SS-EN ISO 13849
- SIS-ISO/TR 14121
- SS-EN ISO 12100
- ISO 20474
- SS-ISO 17757
- DO-278A
- DO-178C
- ED-153
- MIL-STD 882E
- FMV H Progsäk

Automated (driving) systems

Self-Driving

48 mph

Utonosous Sensing /Cossumication /Battery /Navigation /Mittoliess /Ecology

Within its Operational Design Domain

5 Levels of driving automation

"Med hänsyn till utvecklingen i omvärlden bedömer Trafikverket att det högst troligen kommer att finnas kommersiella fordon med automatiseringsnivå 4 i trafik i Sverige inom en tioårsperiod, åtminstone i begränsad skala och främst inom yrkestrafiken."

Trafikverket - Vägens stöd till automatiserade fordon diva-portal.org/smash/get/diva2:1680517/FULLTEXT01.pdf

Safety of high automated driving (L4) decomposed into three sub-problems

Mode confusion during transitions

- Hazardous situation where either non is driving or both are
- Methodology to find safety issues in HMI protocols
 - Human
 - HMI
 - ADS
- Using Fault Tree Analysis to identify causes

Who is driving?

- An agreement between ADS and human driver of how the transition is allowed
- To identify possible interaction failures during the transition we need...
 - a transition protocol
 - an interaction sequence

Adding to the procotol

A simple transition protocol

But who is doing what?

A proposed protocol for the transition

Situation awareness

Mica Endsley model for SA as a way to adding human factors to the protocol

A proposed protocol for the transition

...And then adding the SA model to the protocol

Mode confusion in the A HMI-

K

1007	000		
111		0	1

X

Fault tree analysis

- Perception failure to correctly perceive the information.
- Comprehension failure to comprehend the situation.
- Projection failure to project the situation into the future.

ADS

Decision - Incorrect selection of action to reach a goal, or incorrect execution of that action.

Action - Unintentional substitution of a correct performance segment (action) with an incorrect one.

Usability testing

Can the human identify if the ADS fails during transition and avoid mode confusion?

Examples of protocol failures tested

Thanks so much for your time!

Assessing risk in ISO 26262 Road vehicles — Functional safety

- Severity
- Exposure (probability)
- Controllability (...of the hazardous event of persons involved)

The sum of the three factors results in an "ASIL"

ISO 26262

• ASIL: required safety measure to avoid unreasonable risk of safety related functionality

Common Headaches and Their Causes

Development according to a high ASIL

Mondays V t

Working late making the presentation for tomorrow

Usability testing to argue for controllability

Table B.6 — Examples of possibly controllable hazardous events by the driver or by the persons potentially at risk

	Class of controllability (see <u>Table 3</u>)				
	CO	C1	C2	C3	
Description	Controllable in general	Simply controllable	Normally control- lable	Difficult to control or uncontrollable	
Driving factors and sce- narios	Controllable in general	More than 99 % of the average drivers or other traffic par- ticipants are able to avoid harm	Between 90 % an 99 % of the average drivers or other traffic participants are able to avoid harm	Less than 90 % of the average drivers or other traffic par ticipants are able to avoid harm	

Can the driver notice and avoid mode confusion if the transition to ADS fails?

If each of the 20 data sets complies with the pass-criteria for the test [...], a level of controllability of 85 % [...] can be proven. This is appropriate evidence of the rationale for a C2-estimate.

Thanks again!

